The relevance of false-twist addition on ring spun yarns by means of rotary threaded surfaces

Author:

Xu Duo12ORCID,Gao Chong23,Fan Hang23,Yang Wangwang12,Fang Jian1,Liu Keshuai24ORCID,Xu WeilinORCID

Affiliation:

1. College of Textile and Clothing Engineering, Soochow University, P. R. China

2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, P. R. China

3. Science and Technology Institute, Wuhan Textile University, P. R. China

4. School of Textile, Wuhan Textile University, P. R. China

Abstract

A novel concept of producing false-twist yarns by cyclical stress fluctuation was developed. The forming principle was introduced to analyze the formation process of false twists on rotary threaded contact surfaces. Geometric analysis indicates that cyclical stress variations produce extra rotations (false twists) on fiber strands in the yarn formation area, causing twist redistribution and fiber arrangement remodeling with the appearance of local fiber reversion. Theoretical analysis reveals that more false twists are produced when the spun yarn is in contact with surfaces of high traverse speeds. Then, a motion simulation model using different traverse speeds of the threaded contact surface was established to compare the yarn internal stress variation, verifying the false-twist efficiency at different traverse speeds. Finally, a systematic comparison was conducted between the yarns spun at different traverse speeds. It was shown that the yarn properties improved with higher traverse speeds of the threaded contact surface, achieving less hairiness, high yarn strength, and low residual torque.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3