A novel digital imaging method for measuring cashmere color and its application

Author:

Heng Chong12,Shen Hua12,Wang Fumei12ORCID

Affiliation:

1. College of Textile, Donghua University, Shanghai, China

2. Key Laboratory of Textile Science and Technology Ministry of Education, Shanghai, China

Abstract

The quality of cashmere, such as color and length, determines its price and application. In the current cashmere inspection system, color and length are tested by visual assessment, which is a subjective, time- and labor-consuming process. Herein, the goal of this research is to develop a new method of testing cashmere color using image analysis, and to study the application of color in length measurement. During the color measurement, cashmere was prepared under two sample placement methods, and color features including RGB, XYZ and Lab obtained by the new method were compared with the standard. The calculation method of optical index used in length testing was determined based on theoretical and experimental analysis. Experiments show that fixed weight and pressure are suited for cashmere color measurement. In RGB space, the correlation coefficients ( R2) between the two devices were calculated and were 0.990, 0.995 and 0.996 for parameters R, G and B, respectively. Good agreement also exhibited in XYZ space, with R2 equal to 0.994, 0.996 and 0.999 for X, Y and Z, respectively. This confirmed the accuracy of the proposed color measurement method in RGB and XYZ space. Finally, an accurate fibrogram was obtained by the proposed conversion model for calculating optical index from color values, which is the key curve to testing cashmere length. This study emphasis on methodological aspects and the results acquired are regarded as preliminary, as the experiments studied compose the first stage of research on the exploration of the application of image analysis on cashmere color measurement.

Funder

Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3