Effects of ambient temperature step changes on the heat storage and release in thermal protective clothing

Author:

Huang Qianqian1ORCID,Deng Meng1ORCID,Li Jun12ORCID

Affiliation:

1. College of Fashion and Design, Donghua University, China

2. Key Laboratory of Clothing Design and Technology (Donghua University), Ministry of Education, China

Abstract

Ambient temperature steps between typical non-work and hot work environments will lead to clothing heat storage and release, which is crucial for human health and thermal comfort. In this study, the influence of five types of ambient temperature steps (from 0ºC/5ºC/10ºC/15ºC/20ºC to 40ºC to 0ºC/5ºC/10ºC/15ºC/20ºC) on the heat storage and release in clothing was investigated using a thermal manikin. A moving and temperature-controlled refrigerated incubator was constructed to realize the temperature step conditions. Results showed that ambient temperature step magnitude was positively related to heat storage and release. Some 80% of the amount of heat storage would be completed in around 10 min after the temperature steps. Increasing the inner clothing layer weight and specific heat capacity for local clothing at the chest, thigh and calf improved their heat storage against the large temperature step conditions. As for the abdomen, its heat storage was the largest. However, the clothing layer configuration impacted its heat release, so it was necessary to guide the heat transfer to the skin. The heat storage in the outer layer was increased by 2% to 39% due to adding the inner layer of the garment. The stored heat discharged completely until the temperature step magnitude exceeded 32.5°C. A multiple linear regression formula was proposed to obtain the clothing average heat storage by considering ambient temperature step magnitude and clothing insulation. The results of this study could contribute to the optimization of thermal protective clothing and improvement of the research on human thermal comfort.

Funder

Graduate Student Innovation Fund of Donghua University

Fundamental Research Funds for the Central Universities

International Cooperation Fund of Science and Technology Commission of Shanghai Municipality

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3