Predicting Hairiness for Ring and Rotor Spun Yarns and Analyzing the Impact of Fiber Properties

Author:

Zhu Reiyao1,Ethridge M. Dean1

Affiliation:

1. International Textile Center, Texas Tech University, Lubbock, Texas 79408, U.S.A.

Abstract

Models for predicting ring or rotor yarn hairiness are built using a back-propagation neural network algorithm. These models are based on fiber property input measured by three different systems, hvi, afis, and fmt. We compare the prediction results from the different models, which reveal that yarn hairiness measurements from hvi data are superior to other models. The optimum model is based on the availability of all three measurement systems. We also study the impact of each fiber property on yarn hairiness. The dominant effect is fiber length. Each of the remaining properties has a different degree of impact on ring or rotor yarn hairiness.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3