Affiliation:
1. Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, China
Abstract
With huge and ever-growing products in the factory, image retrieval can help the worker retrieve the same, or similar, existing products rapidly and accurately to guide production. In this paper, an effective method based on Fourier transform and local binary pattern is proposed to improve the retrieval efficiency of wool fabric. After capturing the fabric image, histogram equalization was implemented on the value of the Hue, Saturation, Value (HSV) mode to enhance the contrast. Subsequently, Fourier transform together with local binary pattern operator were performed to obtain the frequency spectrum and the local binary pattern, respectively. Each frequency spectrum was divided into 22 rings with the same width, and the standard deviation of the frequencies in each ring was calculated as a Fourier feature. Distinct output values of each local binary pattern were counted and normalized as local binary pattern features. Finally, Euclidean distance was adopted to measure the similarity based on the Fourier feature and local binary pattern feature. Twenty thousand wool fabric images were captured to demonstrate the efficacy of the proposed method. Experimental results indicate that the framework is effective and superior for image retrieval of wool fabric, providing referential assistance for the worker in the factory and improving retrieval efficiency.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献