Indexing surface smoothness and fiber softness by sound frequency analysis for textile clustering and classification

Author:

Kim Hye Jin1,Youn Seonyoung2,Choi Jeein1,Kim Hyeonji1,Shim Myounghee2,Yun Changsang1ORCID

Affiliation:

1. Department of Fashion Industry, Ewha Womans University, Republic of Korea

2. Korea Textile Trade Association, Republic of Korea

Abstract

Cutting-edge technology is being used in the fashion industry for three-dimensional (3D) virtual fitting programs to meet the demand for clothing manufacturing as well as textile simulating. For expanding the textile choices of the program users, this research looks at the indexation of tactile sensations, the texture of fabrics, which has been subjectively evaluated by the human hand. Firstly, this study objectively measured and indexed the surface smoothness and fiber softness of 749 fabrics through a tissue softness analyzer that mimics human hands. Secondly, after statistical analyses of the drape coefficient, each bending distance and Young's modulus for the initial tensile strength in the warp–weft directions, the thickness, and the weight of the fabrics, it was found that drape (Pearson coefficient = 0.532) and bending properties are the key factors in the fabric surface smoothness (TS750), while the fiber softness (TS7) showed a weak correlation with thickness (Pearson coefficient = 0.364), followed by the log value of the Young's modulus in the weft direction. Thirdly, we classified nine clusters for TS750 based on the 11 regression variables with significant Pearson coefficients, and characterized each cluster in order of surface smoothness (TS750) after Duncan post-hoc tests and analyses of variance (all statistically significant, p < 0.01) with microscopic surface images of one sample for each cluster. For precise TS750 classification, we finally trained the 267 samples with the same 11 variables, resulting in 93.3% prediction through an artificial neural network with multiple hidden layers. This prediction with Fisher discriminants for the clusters will enable the 3D virtual program users to predict further clustering of newly added fabrics.

Funder

Korea Textile Trade Association

Ewha Womans University Research Grant of 2018

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3