An optimum design study of the yarn-channel shape of the air-interlacing nozzle by analysis of fluid flow

Author:

Juraeva Makhsuda1,Song Dong Joo1,Ryu Kyung Jin1

Affiliation:

1. Yeungnam University, Republic of Korea.

Abstract

The air-interlacing process provides assurance in the downstream performance in weaving and knitting without changing the properties of the synthetic yarn. The air-interlacing nozzle is an important component for improving the performance in the air-interlacing process. The airflow inside the air-interlacing nozzle is investigated to design an optimum yarn-channel shape of the nozzle. The width and height of the yarn-channel and inlet pressure are the design variables of the air-interlacing nozzle. The design variables are evaluated by the vorticity. The design of experiments (DOE) approach is utilized to study the influence of the nozzle configuration. Minitab is used as a practical and effective tool in optimizing the nozzle geometry to improve performance. Computational simulations of the impinging airflow inside the nozzle are undertaken using ANSYS CFX. The airflow characteristics such as the vorticity, shock wave, and velocity distributions were discussed. Various cross-sectional shapes of the yarn-channel are investigated with the same inlet pressure. The cross-sectional shape of Shape 6 which has high vorticity is observed to find optimal configurations for the nozzle of the air-interlacing process. The design variables of the nozzle are the width and the height of the yarn-channel and the inlet pressure. The reason for the evaluation of the performance of the nozzle is the maximization of the vorticity. The response surface method (RSM) is applied for the shape optimization. The vorticity cannot increase at the high inlet pressure due to the shock wave. The air-interlacing nozzle, with optimum configurations, is verified numerically and experimentally.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3