Shielding of electromagnetic radiation by multilayer textile sets

Author:

Marciniak Katarzyna1,Grabowska Katarzyna Ewa1,Stempień Zbigniew1,Ciesielska-Wróbel Izabela Luiza2

Affiliation:

1. Institute of Architecture of Textiles, Lodz University of Technology, Poland

2. Centre for Textile Science and Engineering, Ghent University, Belgium

Abstract

This paper presents the continuation of research on shielding efficiency (SE) of electromagnetic radiation (EMR) by woven fabric made of cotton (warps and wefts) and a hybrid yarn (wefts). This hybrid yarn was made of stainless steel yarn by Bekinox wrapped with an enamelled copper wire from Synflex Elektro GmbH, Germany. The pitch of copper coil on a hybrid yarn equals 3 mm. The wefts were introduced into the fabric in the following order: 1 hybrid yarn, 1 cotton yarn, 1 hybrid yarn, 1 cotton yarn, etc. The construction of this specific fabric was proven to be the most efficient in terms of the hybrid weft construction and the fabric construction to shield EMR among other previously tested fabrics with different weft configuration. The current study proposes to verify the effect of the number of layers of the fabrics and their mutual configuration on the final SE of the multilayered set. Some of the most interesting findings of this study are that increasing the number of layers placed on top of one another with an offset angle of 0° to more than two does not provide a higher SE; however, using three such layers provides an SE of 56 dB, which is over two times higher than that provided by a single layer. Increasing the number of layers of fabric aligned at an angle of 45° provides a higher SE only for a frequency of 30 MHz.

Funder

European Commission; Marie Curie International Outgoing

National Center of Science

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3