Modeling of surface temperature distributions on powered e-textile structures using an artificial neural network

Author:

Kursun Bahadir Senem1,Sahin Umut Kivanc1,Kiraz Alper2

Affiliation:

1. Faculty of Textile Technologies and Design, Istanbul Technical University, Turkey

2. Faculty of Engineering, Sakarya University, Turkey

Abstract

An artificial neural network (ANN) model is constructed to derive the surface temperature of e-textile structures developed for cold weather clothing. A series of textile transmission lines made of different types of conductive yarns, insulated by using different types of seam tapes, were enclosed in a thermoplastic textile structure via hot air welding technology, and then they were powered with different levels of specific voltages in order to obtain different heating levels. The surface temperatures of the powered e-textile structures were measured using a thermal camera. The experimental input variables, sample type, temperature, feeding speed, resistance of samples, applied voltage and current were used to construct an ANN model and the outputs of surface temperature and electric power dissipated were used to test the prediction performance of the developed model. It was concluded that the ANN provided substantial predictive performance. Simulations based on the developed ANN model can estimate the surface temperature distributions of powered e-textile structures under different conditions. The ANN model developed for prediction of electric power dissipated was very successful and can be useful for e-textile product designers as well as textile manufacturers, particularly for cold weather protection products such as jackets, gloves and outdoor sleeping mats.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3