Retrosplenial and postsubicular head direction cells compared during visual landmark discrimination

Author:

Lozano Yave Roberto1,Page Hector1,Jacob Pierre-Yves1,Lomi Eleonora1,Street James1,Jeffery Kate1

Affiliation:

1. Division of Psychology and Language Sciences, University College London, London, UK

Abstract

Background: Visual landmarks are used by head direction (HD) cells to establish and help update the animal’s representation of head direction, for use in orientation and navigation. Two cortical regions that are connected to primary visual areas, postsubiculum (PoS) and retrosplenial cortex (RSC), possess HD cells: we investigated whether they differ in how they process visual landmarks. Methods: We compared PoS and RSC HD cell activity from tetrode-implanted rats exploring an arena in which correct HD orientation required discrimination of two opposing landmarks having high, moderate or low discriminability. Results: RSC HD cells had higher firing rates than PoS HD cells and slightly lower modulation by angular head velocity, and anticipated actual head direction by ~48 ms, indicating that RSC spiking leads PoS spiking. Otherwise, we saw no differences in landmark processing, in that HD cells in both regions showed equal responsiveness to and discrimination of the cues, with cells in both regions having unipolar directional tuning curves and showing better discrimination of the highly discriminable cues. There was a small spatial component to the signal in some cells, consistent with their role in interacting with the place cell navigation system, and there was also slight modulation by running speed. Neither region showed theta modulation of HD cell spiking. Conclusions: That the cells can immediately respond to subtle differences in spatial landmarks is consistent with rapid processing of visual snapshots or scenes; similarities in PoS and RSC responding may be due either to similar computations being performed on the visual inputs, or to rapid sharing of information between these regions. More generally, this two-cue HD cell paradigm may be a useful method for testing rapid spontaneous visual discrimination capabilities in other experimental settings.

Funder

Consejo Nacional de Ciencia y Tecnología

Medical Research Council

Wellcome Trust

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3