Putting objects in context: A prefrontal–hippocampal–perirhinal cortex network

Author:

Barker G. R. I.1ORCID,Warburton E. C.1

Affiliation:

1. School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK

Abstract

When we encounter an object, we spontaneously form associations between the object and the environment in which it was encountered. These associations can take a number of different forms, which include location and context. A neural circuit between the hippocampus, medial prefrontal cortex and perirhinal cortex is critical for object-location and object-sequence associations; however, how this neural circuit contributes to the formation of object-context associations has not been established. Bilateral lesions were made in the hippocampus, medial prefrontal cortex or perirhinal cortex to examine each region contribution to object-context memory formation. Next, a disconnection lesion approach was used to examine the necessity of functional interactions between the hippocampus and medial prefrontal cortex or perirhinal cortex. Spontaneous tests of preferential exploration were used to assess memory for different types of object-context associations. Bilateral lesion in the hippocampus, medial prefrontal cortex or perirhinal cortex impaired performance in both an object-place-context and an object-context task. Disconnection of the hippocampus from either the medial prefrontal cortex or perirhinal cortex impaired performance in both the object-place-context and object-context task. Interestingly, when object recognition memory was tested with a context switch between encoding and test, performance in the hippocampal and medial prefrontal cortex lesion groups was disrupted and performance in each disconnection group (i.e. hippocampus + medial prefrontal cortex, hippocampus + perirhinal cortex) was significantly impaired. Overall, these experiments establish the importance of the hippocampal-medial prefrontal-perirhinal cortex circuit for the formation of object-context associations.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3