Spontaneous object-location memory based on environmental geometry is impaired by both hippocampal and dorsolateral striatal lesions

Author:

Poulter Steven L.1,Kosaki Yutaka12,Sanderson David J.1,McGregor Anthony1ORCID

Affiliation:

1. Department of Psychology, Durham University, Durham, UK

2. Department of Psychology, Waseda University, Tokyo, Japan

Abstract

We examined the role of the hippocampus and the dorsolateral striatum in the representation of environmental geometry using a spontaneous object recognition procedure. Rats were placed in a kite-shaped arena and allowed to explore two distinctive objects in each of the right-angled corners. In a different room, rats were then placed into a rectangular arena with two identical copies of one of the two objects from the exploration phase, one in each of the two adjacent right-angled corners that were separated by a long wall. Time spent exploring these two objects was recorded as a measure of recognition memory. Since both objects were in different locations with respect to the room (different between exploration and test phases) and the global geometry (also different between exploration and test phases), differential exploration of the objects must be a result of initial habituation to the object relative to its local geometric context. The results indicated an impairment in processing the local geometric features of the environment for both hippocampus and dorsolateral striatum lesioned rats compared with sham-operated controls, though a control experiment showed these rats were unimpaired in a standard object recognition task. The dorsolateral striatum has previously been implicated in egocentric route-learning, but the results indicate an unexpected role for the dorsolateral striatum in processing the spatial layout of the environment. The results provide the first evidence that lesions to the hippocampus and dorsolateral striatum impair spontaneous encoding of local environmental geometric features.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3