A pilot study on deep learning-based grading of corners of vertebral bodies for assessment of radiographic progression in patients with ankylosing spondylitis

Author:

Koo Bon San1ORCID,Lee Jae Joon2,Jung Jae-Woo2,Kang Chang Ho3,Joo Kyung Bin4,Kim Tae-Hwan4ORCID,Lee Seunghun5

Affiliation:

1. Division of Rheumatology, Department of Internal Medicine, Inje University Seoul Paik Hospital, College of Medicine, Inje University, Seoul, Korea

2. CRESCOM, Seongnam-si, Korea

3. Department of Radiology, Korea University Anam Hospital, Seoul, Korea

4. Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea

5. Department of Radiology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea

Abstract

Background: Radiographs are widely used to evaluate radiographic progression with modified stoke ankylosing spondylitis spinal score (mSASSS). Objective: This pilot study aimed to develop a deep learning model for grading the corners of the cervical and lumbar vertebral bodies for computer-aided detection of mSASSS in patients with ankylosing spondylitis (AS). Methods: Digital radiographic examination of the spine was performed using Discovery XR656 (GE Healthcare) and Digital Diagnost (Philips). The disk points were detected between the bodies using a key-point detection deep learning model from the image obtained in DICOM (digital imaging and communications in medicine) format from the cervical and lumbar spinal radiographs. After cropping the vertebral regions around the disk point, the lower and upper corners of the vertebral bodies were classified as grade 3 (total bony bridges) or grades 0, 1, or 2 (non-bridges). We trained a convolutional neural network model to predict the grades in the lower and upper corners of the vertebral bodies. The performance of the model was evaluated in a validation set, which was separate from the training set. Results: Among 1280 patients with AS for whom mSASSS data were available, 5,083 cervical and 5245 lumbar lateral radiographs were reviewed. The total number of corners where mSASSS was measured in the cervical and lumbar vertebrae, including the upper and lower corners, was 119,414. Among them, the number of corners in the training and validation sets was 110,088 and 9326, respectively. The mean accuracy, sensitivity, and specificity for mSASSS scoring in one corner of the vertebral body were 0.91604, 0.80288, and 0.94244, respectively. Conclusion: A high-performance deep learning model for grading the corners of the vertebral bodies was developed for the first time. This model must be improved and further validated to develop a computer-aided tool for assessing mSASSS in the future.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3