Temporal visuomotor synchrony induces embodiment towards an avatar with biomechanically impossible arm movements

Author:

Hapuarachchi Harin1ORCID,Ishimoto Hiroki1,Kitazaki Michiteru1ORCID,Sugimoto Maki2,Inami Masahiko3

Affiliation:

1. Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan

2. Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan

3. Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Abstract

Visuomotor synchrony in time and space induces a sense of embodiment towards virtual bodies experienced in first-person view using Virtual Reality (VR). Here, we investigated whether temporal visuomotor synchrony affects avatar embodiment even when the movements of the virtual arms are spatially altered from those of the user in a non-human-like manner. In a within-subjects design VR experiment, participants performed a reaching task controlling an avatar whose lower arms bent in inversed and biomechanically impossible directions from the elbow joints. They performed the reaching task using this “unnatural avatar” as well as a “natural avatar,” whose arm movements and positions spatially matched the user. The reaching tasks were performed with and without a one second delay between the real and virtual movements. While the senses of body ownership and agency towards the unnatural avatar were significantly lower compared to those towards the natural avatar, temporal visuomotor synchrony did significantly increase the sense of embodiment towards the unnatural avatar as well as the natural avatar. These results suggest that temporal visuomotor synchrony is crucial for inducing embodiment even when the spatial match between the real and virtual limbs is disrupted with movements outside the pre-existing cognitive representations of the human body.

Funder

Exploratory Research for Advanced Technology

Japan Society for the Promotion of Science

JST Establishment of University Fellowships towards the Creation of Science Technology Innovation

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3