Origin of the ease of association of color names: Comparison between humans and AI

Author:

Komatsu Hidehiko12ORCID,Maeno Ami3,Watanabe Eiji14

Affiliation:

1. National Institute for Basic Biology, Okazaki, Aichi, Japan

2. Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan

3. Kyoto Institute of Technology, Kyoto, Japan

4. Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan

Abstract

Rapid evolution of artificial intelligence (AI) based on deep neural networks has resulted in artificial systems such as generative pre-trained transformer 3 (GPT-3), which can generate human-like language. Such a system may provide a novel platform for studying how human perception is related to knowledge and the ability of language generation. We compared the frequency distribution of basic color terms in the answers of human subjects and GPT-3 when both were asked similar questions regarding color names associated with the letters of the alphabet. We found that GPT-3 generated basic color terms at a frequency very similar to that of human non-synaesthetes. A similar frequency was observed when color names associated with numerals were tested indicating that simple co-occurrence of alphabet and color word in the trained dataset cannot explain the results. We suggest that the proposed experimental framework using the latest AI models has the potential to explore the mechanisms of human perception.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Reference8 articles.

1. Category norms of verbal items in 56 categories A replication and extension of the Connecticut category norms.

2. Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C. … Amodei D. (2020a). Language models are few-shot learners. arXiv. 2005.14165.

3. Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C. … Amodei D. (2020b). Language models are few-shot learners. Proc 34th Conf Neural Info Proc Sys (NeurIPS), 1–25.

4. Resolving the question of color naming universals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3