Race categorization in noise

Author:

de Lissa Peter1ORCID,Watanabe Katsumi2,Gu Li3,Ishii Tatsunori4,Nakamura Koyo5,Kimura Taiki2,Sagasaki Amane2,Caldara Roberto1

Affiliation:

1. University of Fribourg, Fribourg, Switzerland

2. Waseda University, Tokyo, Japan

3. School of Innovation Design, Guangzhou Academy of Fine Arts, Guangzhou, China

4. Japan Womens' University, Tokyo, Japan; Waseda University, Tokyo, Japan

5. University of Vienna, Vienna, Austria; Japan Society for the Promotion of Science, Tokyo, Japan; Waseda University, Tokyo, Japan

Abstract

People are typically faster to categorize the race of a face if it belongs to a race different from their own. This Other Race Categorization Advantage (ORCA) is thought to reflect an enhanced sensitivity to the visual race signals of other race faces, leading to faster response times. The current study investigated this sensitivity in a cross-cultural sample of Swiss and Japanese observers with a race categorization task using faces that had been parametrically degraded of visual structure, with normalized luminance and contrast. While Swiss observers exhibited an increasingly strong ORCA in both reaction time and accuracy as the face images were visually degraded up to 20% structural coherence, the Japanese observers manifested this pattern most distinctly when the faces were fully structurally-intact. Critically, for both observer groups, there was a clear accuracy effect at the 20% structural coherence level, indicating that the enhanced sensitivity to other race visual signals persists in significantly degraded stimuli. These results suggest that different cultural groups may rely on and extract distinct types of visual race signals during categorization, which may depend on the available visual information. Nevertheless, heavily degraded stimuli specifically favor the perception of other race faces, indicating that the visual system is tuned by experience and is sensitive to the detection of unfamiliar signals.

Funder

Japan Society for the Promotion of Science

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The speed of race;Social Cognitive and Affective Neuroscience;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3