Diagnosing the Periphery: Using the Rey–Osterrieth Complex Figure Drawing Test to Characterize Peripheral Visual Function

Author:

Coates Daniel R.1,Wagemans Johan2,Sayim Bilge3

Affiliation:

1. Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium; Institute of Psychology, University of Bern, Bern, Switzerland

2. Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium

3. Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium; Institute of Psychology, University of Bern, Bern, Switzerland; SCALab – Sciences Cognitives et Sciences Affectives, Universités de Lille, Lille, France

Abstract

Peripheral vision is strongly limited by crowding, the deleterious influence of neighboring stimuli on target perception. Many quantitative aspects of this phenomenon have been characterized, but the specific nature of the perceptual degradation remains elusive. We utilized a drawing technique to probe the phenomenology of peripheral vision, using the Rey–Osterrieth Complex Figure, a standard neuropsychological clinical instrument. The figure was presented at 12° or 6° in the right visual field, with eye tracking to ensure that the figure was only presented when observers maintained stable fixation. Participants were asked to draw the figure with free viewing, capturing its peripheral appearance. A foveal condition was used to measure copying performance in direct view. To assess the drawings, two raters used standard scoring systems that evaluated feature positions, spatial distortions, and omission errors. Feature scores tended to decrease with increasing eccentricity, both within and between conditions, reflecting reduced resolution and increased crowding in peripheral vision. Based on evaluation of the drawings, we also identified new error classes unique to peripheral presentation, including number errors for adjacent similar features and distinctive spatial distortions. The multifaceted nature of the Rey–Osterrieth Complex Figure—containing configural elements, detached compound features, and texture-like components—coupled with the flexibility of the free-response drawing paradigm and the availability of standardized scoring systems, provides a promising method to probe peripheral perception and crowding.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3