Affiliation:
1. Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Abstract
Background: Otorhinolaryngology diseases are well suited for artificial intelligence (AI)-based interpretation. The use of AI, particularly AI based on deep learning (DL), in the treatment of human diseases is becoming more and more popular. However, there are few bibliometric analyses that have systematically studied this field. Objective: The objective of this study was to visualize the research hot spots and trends of AI and DL in ENT diseases through bibliometric analysis to help researchers understand the future development of basic and clinical research. Methods: In all, 232 articles and reviews were retrieved from The Web of Science Core Collection. Using CiteSpace and VOSviewer software, countries, institutions, authors, references, and keywords in the field were visualized and examined. Results: The majority of these papers came from 44 nations and 498 institutions, with China and the United States leading the way. Common diseases used by AI in ENT include otosclerosis, otitis media, nasal polyps, sinusitis, and so on. In the early years, research focused on the analysis of hearing and articulation disorders, and in recent years mainly on the diagnosis, localization, and grading of diseases. Conclusions: The analysis shows the periodical hot spots and development direction of AI and DL application in ENT diseases from the time dimension. The diagnosis and prognosis of otolaryngology diseases and the analysis of otolaryngology endoscopic images have been the focus of current research and the development trend of future.
Funder
Natural Science Foundation of Heilongjiang Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献