An improved procedure for estimation of malignant breast cancer prevalence using partially rank ordered set samples with multiple concomitants

Author:

Hatefi Armin1,Jafari Jozani Mohammad2

Affiliation:

1. Department of Statistical Sciences, University of Toronto and The Fields Institute for Research in Mathematical Sciences, Toronto, Canada

2. Department of Statistics, University of Manitoba, Winnipeg, Canada

Abstract

Rank-based sampling designs are widely used in situations where measuring the variable of interest is costly but a small number of sampling units (set) can be easily ranked prior to taking the final measurements on them and this can be done at little cost. When the variable of interest is binary, a common approach for ranking the sampling units is to estimate the probabilities of success through a logistic regression model. However, this requires training samples for model fitting. Also, in this approach once a sampling unit has been measured, the extra rank information obtained in the ranking process is not used further in the estimation process. To address these issues, in this paper, we propose to use the partially rank-ordered set sampling design with multiple concomitants. In this approach, instead of fitting a logistic regression model, a soft ranking technique is employed to obtain a vector of weights for each measured unit that represents the probability or the degree of belief associated with its rank among a small set of sampling units. We construct an estimator which combines the rank information and the observed partially rank-ordered set measurements themselves. The proposed methodology is applied to a breast cancer study to estimate the proportion of patients with malignant (cancerous) breast tumours in a given population. Through extensive numerical studies, the performance of the estimator is evaluated under various concomitants with different ranking potentials (i.e. good, intermediate and bad) and tie structures among the ranks. We show that the precision of the partially rank-ordered set estimator is better than its counterparts under simple random sampling and ranked set sampling designs and, hence, the sample size required to achieve a desired precision is reduced.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3