A flexible class of parametric transition regression models based on copulas: application to poliomyelitis incidence

Author:

Escarela Gabriel1,Mena Ramsés H2,Castillo-Morales Alberto3

Affiliation:

1. Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Col. Vicentina, México D.F., Mexico,

2. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), México D.F., México

3. Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Col. Vicentina, México D.F., Mexico

Abstract

This paper presents an extension of a general parametric class of transitional models of order p. In these models, the conditional distribution of the current observation, given the present and past history, is a mixture of conditional distributions, each of them corresponding to the current observation, given each one of the p-lagged observations. Such conditional distributions are constructed using bivariate copula models which allow for a rich range of dependence suitable to model non-Gaussian time series. Fixed and time varying covariates can be included in the models. These models have the advantage of straightforward construction and estimation for the analysis of time series and more general longitudinal data. A poliomyelitis incidence data set is used to illustrate the proposed methods, contrary to other researches’ conclusions whose methods are mainly based on linear models, we find significant evidence of a decreasing trend in polio infection after accounting for seasonality.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Copula-based markov chain logistic regression modeling on binomial time series data;MethodsX;2024-06

2. Computational methods for a copula-based Markov chain model with a binomial time series;Communications in Statistics - Simulation and Computation;2022-04-18

3. On Construction and Estimation of Stationary Mixture Transition Distribution Models;Journal of Computational and Graphical Statistics;2021-11-09

4. Autoregressive density modeling with the Gaussian process mixture transition distribution;Journal of Time Series Analysis;2021-06-30

5. Count Time Series: A Methodological Review;Journal of the American Statistical Association;2021-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3