On the EM algorithm for overdispersed count data

Author:

McLachlan G J1

Affiliation:

1. Department of Mathematics, The University of Queensland, Queensland, Australia,

Abstract

In this paper, we consider the use of the EM algorithm for the fitting of distributions by maximum likelihood to overdispersed count data. In the course of this, we also provide a review of various approaches that have been proposed for the analysis of such data. As the Poisson and binomial regression models, which are often adopted in the first instance for these analyses, are particular examples of a generalized linear model (GLM), the focus of the account is on the modifications and extensions to GLMs for the handling of overdispersed count data.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Class Discovery, Comparison, and Prediction Methods for RNA-Seq Data;Research Anthology on Bioinformatics, Genomics, and Computational Biology;2023-12-29

2. Unpacking Unexplored Psychological Factors in Alcohol and Substance Use in Gang Members;Crime & Delinquency;2023-11-02

3. An Almost Unbiased Ridge Estimator for the Conway–Maxwell–Poisson Regression Model;Iranian Journal of Science;2023-05-29

4. Two parameter estimators for the Conway–Maxwell–Poisson regression model;Journal of Statistical Computation and Simulation;2023-02-13

5. Class Discovery, Comparison, and Prediction Methods for RNA-Seq Data;Encyclopedia of Data Science and Machine Learning;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3