Dealing with missing information on covariates for excess mortality hazard regression models – Making the imputation model compatible with the substantive model

Author:

Antunes Luís12ORCID,Mendonça Denisa23,Bento Maria José13ORCID,Njagi Edmund Njeru4,Belot Aurélien4,Rachet Bernard4ORCID

Affiliation:

1. Grupo de Epidemiologia de Cancro, Centro de Investigação do IPO Porto (CI-IPOP), Instituto Português de Oncologia do Porto (IPO Porto), Porto, Portugal

2. EPI-UNIT – Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal

3. Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal

4. Inequalities in Cancer Outcomes Network, London School of Hygiene and Tropical Medicine, London, UK

Abstract

Missing data is a common issue in epidemiological databases. Among the different ways of dealing with missing data, multiple imputation has become more available in common statistical software packages. However, the incompatibility between the imputation and substantive model, which can arise when the associations between variables in the substantive model are not taken into account in the imputation models or when the substantive model is itself nonlinear, can lead to invalid inference. Aiming at analysing population-based cancer survival data, we extended the multiple imputation substantive model compatible-fully conditional specification (SMC-FCS) approach, proposed by Bartlett et al. in 2015 to accommodate excess hazard regression models. The proposed approach was compared with the standard fully conditional specification multiple imputation procedure and with the complete-case analysis using a simulation study. The SMC-FCS approach produced unbiased estimates in both scenarios tested, while the fully conditional specification produced biased estimates and poor empirical coverages probabilities. The SMC-FCS algorithm was then used for handling missing data in the evaluation of socioeconomic inequalities in survival from colorectal cancer patients diagnosed in the North Region of Portugal. The analysis using SMC-FCS showed a clearer trend in higher excess hazards for patients coming from more deprived areas. The proposed algorithm was implemented in R software and is presented as Supplementary Material.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handling missing covariate data in clinical studies in haematology;Best Practice & Research Clinical Haematology;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3