Intervention treatment distributions that depend on the observed treatment process and model double robustness in causal survival analysis

Author:

Wen Lan1ORCID,Marcus Julia L.2,Young Jessica G.2

Affiliation:

1. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada

2. Department of Population Medicine, Harvard Medical School, Boston, MA, USA

Abstract

The generalized g-formula can be used to estimate the probability of survival under a sustained treatment strategy. When treatment strategies are deterministic, estimators derived from the so-called efficient influence function (EIF) for the g-formula will be doubly robust to model misspecification. In recent years, several practical applications have motivated estimation of the g-formula under non-deterministic treatment strategies where treatment assignment at each time point depends on the observed treatment process. In this case, EIF-based estimators may or may not be doubly robust. In this paper, we provide sufficient conditions to ensure the existence of doubly robust estimators for intervention treatment distributions that depend on the observed treatment process for point treatment interventions and give a class of intervention treatment distributions dependent on the observed treatment process that guarantee model doubly and multiply robust estimators in longitudinal settings. Motivated by an application to pre-exposure prophylaxis (PrEP) initiation studies, we propose a new treatment intervention dependent on the observed treatment process. We show there exist (1) estimators that are doubly and multiply robust to model misspecification and (2) estimators that when used with machine learning algorithms can attain fast convergence rates for our proposed intervention. Finally, we explore the finite sample performance of our estimators via simulation studies.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Nonparametric Estimation of Stochastic Policy Effects with Clustered Interference;Journal of the American Statistical Association;2024-05-20

2. G‐formula for observational studies under stratified interference, with application to bed net use on malaria;Statistics in Medicine;2024-05-10

3. Story-led Causal Inference;Epidemiology;2024-04-18

4. Grace periods in comparative effectiveness studies of sustained treatments;Journal of the Royal Statistical Society Series A: Statistics in Society;2024-01-22

5. Nonparametric estimation of conditional incremental effects;Journal of Causal Inference;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3