A generalization of moderated statistics to data adaptive semiparametric estimation in high-dimensional biology

Author:

Hejazi Nima S1ORCID,Boileau Philippe23,van der Laan Mark J234,Hubbard Alan E23

Affiliation:

1. Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA

2. Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA

3. Center for Computational Biology, University of California, Berkeley, CA, USA

4. Department of Statistics, University of California, Berkeley, CA, USA

Abstract

The widespread availability of high-dimensional biological data has made the simultaneous screening of many biological characteristics a central problem in computational and high-dimensional biology. As the dimensionality of datasets continues to grow, so too does the complexity of identifying biomarkers linked to exposure patterns. The statistical analysis of such data often relies upon parametric modeling assumptions motivated by convenience, inviting opportunities for model misspecification. While estimation frameworks incorporating flexible, data adaptive regression strategies can mitigate this, their standard variance estimators are often unstable in high-dimensional settings, resulting in inflated Type-I error even after standard multiple testing corrections. We adapt a shrinkage approach compatible with parametric modeling strategies to semiparametric variance estimators of a family of efficient, asymptotically linear estimators of causal effects, defined by counterfactual exposure contrasts. Augmenting the inferential stability of these estimators in high-dimensional settings yields a data adaptive approach for robustly uncovering stable causal associations, even when sample sizes are limited. Our generalized variance estimator is evaluated against appropriate alternatives in numerical experiments, and an open source R/Bioconductor package, biotmle, is introduced. The proposal is demonstrated in an analysis of high-dimensional DNA methylation data from an observational study on the epigenetic effects of tobacco smoking.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3