Bayesian negative-binomial-family-based multistate Markov model for the evaluation of periodic population-based cancer screening considering incomplete information and measurement errors

Author:

Hsu Chen-Yang1,Yen Ming-Fang2,Auvinen Anssi3,Chiu Yueh-Hsia4,Chen Hsiu-Hsi1

Affiliation:

1. Division of Biostatistics, College of Public Health, National Taiwan University, Taipei, Taiwan

2. School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan

3. Tampere School of Health Science, University of Tampere, Tampere, Finland

4. Department of Health Care Management, College of Management, Chang Gung University, Tao-Yuan, Taiwan

Abstract

Population-based cancer screening is often asked but hardly addressed by a question: “How many rounds of screening are required before identifying a cancer of interest staying in the pre-clinical detectable phase (PCDP)?” and also a similar one related to the number of screens required for stopping screening for the low risk group. It can be answered by using longitudinal follow-up data on repeated rounds of screen, namely periodic screen, but such kind of data are rather complicated and fraught with intractable statistical properties including correlated multistate outcomes, unobserved and incomplete (censoring or truncation) information, and imperfect measurements. We therefore developed a negative-binomial-family-based discrete-time stochastic process, taking sensitivity and specificity into account, to accommodate these thorny issues. The estimation of parameters was implemented with Bayesian Markov Chain Monte Carlo method. We demonstrated how to apply this proposed negative-binomial-family-based model to the empirical data similar to the Finnish breast cancer screening program.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3