Benefits of combining prevalent and incident cohorts: An application to myotonic dystrophy

Author:

Wolfson David B1,Best Ana F2ORCID,Addona Vittorio3,Wolfson Julian4,Gadalla Shahinaz M5

Affiliation:

1. Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada

2. Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

3. Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN, USA

4. Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA

5. Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA

Abstract

It is frequently of interest to estimate the time that individuals survive with a disease, that is, to estimate the time between disease onset and occurrence of a clinical endpoint such as death. Epidemiologic survival data are commonly collected from either an incident cohort, whose members' disease onset occurs after the study baseline date, or from a cohort with prevalent disease that is followed forward in time. Incident cohort survival data are limited by study termination, while prevalent cohort data provide biased (left-truncated) survival data. In this article, we investigate the advantages of a study design featuring simultaneous follow-up of prevalent and incident cohorts to the estimation of the survivor function. Our analyses are supported by simulations and illustrated using data on survival after myotonic dystrophy diagnosis from the United Kingdom Clinical Practice Research Datalink (CPRD). We demonstrate that the NPMLE using combined incident and prevalent cohort data estimates the true survivor function very well, even for moderate sample sizes, and ameliorates the disadvantages of using a purely incident or prevalent cohort.

Funder

National Cancer Institute Intramural Research Program

National Sciences and Engineering Council of Canada Discovery Grant Program

Canadian Institutes of Health Research

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3