Optimized multiple testing procedures for nested sub-populations based on a continuous biomarker

Author:

Graf Alexandra Christine1ORCID,Magirr Dominic2,Dmitrienko Alex3,Posch Martin1

Affiliation:

1. Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria

2. Advanced Methodology and Data Science, Novartis Pharma AG, Basel, Switzerland

3. Mediana, Overland Park, KS, USA

Abstract

An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients can be classified into biomarker low and biomarker high subgroups, which are defined via a threshold on the continuous biomarker. However, if insufficient information on the biomarker is available, the a priori choice of the threshold can be challenging and it has been proposed to consider several thresholds and to apply appropriate multiple testing procedures to test for a treatment effect in the corresponding subgroups controlling the family-wise type 1 error rate. In this manuscript we propose a framework to select optimal thresholds and corresponding optimized multiple testing procedures that maximize the expected power to identify at least one subgroup with a positive treatment effect. Optimization is performed over a prior on a family of models, modelling the relation of the biomarker with the expected outcome under treatment and under control. We find that for the considered scenarios 3 to 4 thresholds give the optimal power. If there is a prior belief on a small subgroup where the treatment has a positive effect, additional optimization of the spacing of thresholds may result in a large benefit. The procedure is illustrated with a clinical trial example in depression.

Funder

European Unions 7th Framework Program

UK Medical Research Council

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3