Sequential selection of variables using short permutation procedures and multiple adjustments: An application to genomic data

Author:

Azevedo Costa Marcelo1,de Souza Rodrigues Thiago2,da Costa André Gabriel FC3,Natowicz René4,Pádua Braga Antônio5

Affiliation:

1. Department of Industrial Engineering, Universidade Federal de Minas Gerais, Belo Horizonte,Brazil

2. Computer Department, Centro Federal de Educação Tecnológica Minas Gerais, Brazil

3. Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

4. Computer Sciences Department, University of Paris—ESIEE/Paris, Paris, France

5. Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

This work proposes a sequential methodology for selecting variables in classification problems in which the number of predictors is much larger than the sample size. The methodology includes a Monte Carlo permutation procedure that conditionally tests the null hypothesis of no association among the outcomes and the available predictors. In order to improve computing aspects, we propose a new parametric distribution, the Truncated and Zero Inflated Gumbel Distribution. The final application is to find compact classification models with improved performance for genomic data. Results using real data sets show that the proposed methodology selects compact models with optimized classification performances.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anagram Technique: The Investigation of Tonal Music into New Frequencies for Composition;2023 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON);2023-03-22

2. Iterative Variable Selection for High-Dimensional Data: Prediction of Pathological Response in Triple-Negative Breast Cancer;Mathematics;2021-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3