Affiliation:
1. Sultan Qaboos University, Oman
Abstract
Agreement among observations on two variables for reliability or validation purposes is usually assessed by the evaluation of the mean squared differences (MSD). Many transformations of MSD have been proposed to interpret and make statistical inferences about the agreement between the two variables, including the concordance correlation coefficient (CCC) and the random marginal agreement coefficient (RMAC). This paper presents a normalization of MSD based on a reference range and uses it to derive CCC and RMAC (or ACC alternatively). The normalization of MSD enables the comparison between these two coefficients. The paper compares thoroughly the differences between these two coefficients and their properties at different agreement levels. Results show that ACC has promising properties over CCC. A Monte Carlo simulations as well as real data applications are performed. ACC for more than two variables are also derived.
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献