Inference under covariate-adaptive randomization: A simulation study

Author:

Callegaro Andrea1ORCID,Harsha Shree B S2,Karkada Naveen1

Affiliation:

1. GSK Vaccines, Rue de l’Institut 89, Rixesart, Belgium

2. Randstad India Pvt Ltd (Employee Contracted for GSK Asia Pvt Ltd), Bangalore, India

Abstract

In clinical trials, several covariate-adaptive designs have been proposed to balance treatment arms with respect to key covariates. Although some argue that conventional asymptotic tests are still appropriate when covariate-adaptive randomization is used, others think that re-randomization tests should be used. In this manuscript, we compare by simulation the performance of asymptotic and re-randomization tests under covariate-adaptive randomization. Our simulation study confirms results expected by the existing theory (e.g. asymptotic tests do not control type I error when the model is miss-specified). Furthermore, it shows that (i) re-randomization tests are as powerful as the asymptotic tests if the model is correct; (ii) re-randomization tests are more powerful when adjusting for covariates; (iii) minimization and permuted blocks provide similar results.

Funder

GSK Vaccines

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3