Optimal two-stage sampling for mean estimation in multilevel populations when cluster size is informative

Author:

Innocenti Francesco1ORCID,Candel Math JJM1ORCID,Tan Frans ES1,van Breukelen Gerard JP12ORCID

Affiliation:

1. Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands

2. Department of Methodology and Statistics, Graduate School of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands

Abstract

To estimate the mean of a quantitative variable in a hierarchical population, it is logistically convenient to sample in two stages (two-stage sampling), i.e. selecting first clusters, and then individuals from the sampled clusters. Allowing cluster size to vary in the population and to be related to the mean of the outcome variable of interest (informative cluster size), the following competing sampling designs are considered: sampling clusters with probability proportional to cluster size, and then the same number of individuals per cluster; drawing clusters with equal probability, and then the same percentage of individuals per cluster; and selecting clusters with equal probability, and then the same number of individuals per cluster. For each design, optimal sample sizes are derived under a budget constraint. The three optimal two-stage sampling designs are compared, in terms of efficiency, with each other and with simple random sampling of individuals. Sampling clusters with probability proportional to size is recommended. To overcome the dependency of the optimal design on unknown nuisance parameters, maximin designs are derived. The results are illustrated, assuming probability proportional to size sampling of clusters, with the planning of a hypothetical survey to compare adolescent alcohol consumption between France and Italy.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3