Sampling-based Markov regression model for multistate disease progression: Applications to population-based cancer screening program

Author:

Hsu Chen-Yang12,Hsu Wen-Feng13,Yen Amy Ming-Fang3,Chen Hsiu-Hsi14ORCID

Affiliation:

1. Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei

2. School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei

3. Department of Internal Medicine, National Taiwan University Hospital, Taipei

4. Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, National Taiwan University, Taipei

Abstract

To develop personalized screening and surveillance strategies, the information required to superimpose state-specific covariates into the multi-step progression of disease natural history often relies on the entire population-based screening data, which are costly and infeasible particularly when a new biomarker is proposed. Following Prentice’s case-cohort concept, a non-standard case-cohort design from a previous study has been adapted for constructing multistate disease natural history with two-stage sampling. Nonetheless, the use of data only from first screens may invoke length-bias and fail to consider the test sensitivity. Therefore, a new sampling-based Markov regression model and its variants are proposed to accommodate additional subsequent follow-up data on various detection modes to construct state-specific covariate-based multistate disease natural history with accuracy and efficiency. Computer simulation algorithms for determining the required sample size and the sampling fraction of each detection mode were developed either through power function or the capacity of screening program. The former is illustrated with breast cancer screening data from which the effect size and the required sample size regarding the effect of BRCA on multistate outcome of breast cancer were estimated. The latter is applied to population-based colorectal cancer screening data to identify the optimal sampling fraction of each detection mode.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3