Bayesian analysis of longitudinal binary responses based on the multivariate probit model: A comparison of five methods

Author:

Lu Kaifeng1ORCID,Chen Fang2

Affiliation:

1. Global Statistics, BeiGene, Ridgefield Park, NJ, USA

2. SAS Institute Inc., Cary, NC, USA

Abstract

Dichotomous response data observed over multiple time points, especially data that exhibit longitudinal structures, are important in many applied fields. The multivariate probit model has been an attractive tool in such situations for its ability to handle correlations among the outcomes, typically by modeling the covariance (correlation) structure of the latent variables. In addition, a multivariate probit model facilitates controlled imputations for nonignorable dropout, a phenomenon commonly observed in clinical trials of experimental drugs or biologic products. While the model is relatively simple to specify, estimation, particularly from a Bayesian perspective that relies on Markov chain Monte Carlo sampling, is not as straightforward. Here we compare five sampling algorithms for the correlation matrix and discuss their merits: a parameter-expanded Metropolis-Hastings algorithm (Zhang et al., 2006), a parameter-expanded Gibbs sampling algorithm (Talhouk et al., 2012), a parameter-expanded Gibbs sampling algorithm with unit constraints on conditional variances (Tang, 2018), a partial autocorrelation parameterization approach (Gaskins et al., 2014), and a semi-partial correlation parameterization approach (Ghosh et al., 2021). We describe each algorithm, use simulation studies to evaluate their performance, and focus on comparison criteria such as computational cost, convergence time, robustness, and ease of implementations. We find that the parameter-expanded Gibbs sampling algorithm by Talhouk et al. (2012) often has the most efficient convergence with relatively low computational complexity, while the partial autocorrelation parameterization approach is more flexible for estimating the correlation matrix of latent variables for typical late phase longitudinal studies.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3