How to obtain valid tests and confidence intervals after propensity score variable selection?

Author:

Dukes Oliver1ORCID,Vansteelandt Stijn12

Affiliation:

1. Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Belgium

2. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK

Abstract

The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure or treatment effects in observational studies. Routine practice is often based on stepwise selection procedures that use hypothesis testing, change-in-estimate assessments or the lasso, which have all been criticised for – amongst other things – not giving sufficient priority to the selection of confounders. This has prompted vigorous recent activity in developing procedures that prioritise the selection of confounders, while preventing the selection of so-called instrumental variables that are associated with exposure, but not outcome (after adjustment for the exposure). A major drawback of all these procedures is that there is no finite sample size at which they are guaranteed to deliver treatment effect estimators and associated confidence intervals with adequate performance. This is the result of the estimator jumping back and forth between different selected models, and standard confidence intervals ignoring the resulting model selection uncertainty. In this paper, we will develop insight into this by evaluating the finite-sample distribution of the exposure effect estimator in linear regression, under a number of the aforementioned confounder selection procedures. We will show that by making clever use of propensity scores, a simple and generic solution is obtained in the context of generalized linear models, which overcomes this concern (under weaker conditions than competing proposals). Specifically, we propose to use separate regularized regressions for the outcome and propensity score models in order to construct a doubly robust ‘g-estimator’; when these models are sufficiently sparse and correctly specified, standard confidence intervals for the g-estimator implicitly incorporate the uncertainty induced by the variable selection procedure.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3