Association analysis of successive events data in the presence of competing risks

Author:

Chen Xiaotian1,Cheng Yu12,Frank Ellen2,Kupfer David J2

Affiliation:

1. Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA

2. Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA

Abstract

We aim to close a methodological gap in analyzing durations of successive events that are subject to induced dependent censoring as well as competing-risk censoring. In the Bipolar Disorder Center for Pennsylvanians study, some patients who managed to recover from their symptomatic entry later developed a new depressive or manic episode. It is of great clinical interest to quantify the association between time to recovery and time to recurrence in patients with bipolar disorder. The estimation of the bivariate distribution of the gap times with independent censoring has been well studied. However, the existing methods cannot be applied to failure times that are censored by competing causes such as in the Bipolar Disorder Center for Pennsylvanians study. Bivariate cumulative incidence function has been used to describe the joint distribution of parallel event times that involve multiple causes. To the best of our knowledge, however, there is no method available for successive events with competing-risk censoring. Therefore, we extend the bivariate cumulative incidence function to successive events data, and propose non-parametric estimators of the bivariate cumulative incidence function and the related conditional cumulative incidence function. Moreover, an odds ratio measure is proposed to describe the cause-specific dependence, leading to the development of a formal test for independence of successive events. Simulation studies demonstrate that the estimators and tests perform well for realistic sample sizes, and our methods can be readily applied to the Bipolar Disorder Center for Pennsylvanians study.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3