Methods for meta-analysis of pharmacodynamic dose–response data with application to multi-arm studies of alogliptin

Author:

Langford Oliver1,Aronson Jeffrey K1,van Valkenhoef Gert2,Stevens Richard J1

Affiliation:

1. Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

2. Department of Epidemiology, University of Groningen, University Medical Center, Groningen, The Netherlands

Abstract

Standard methods for meta-analysis of dose–response data in epidemiology assume a model with a single scalar parameter, such as log-linear relationships between exposure and outcome; such models are implicitly unbounded. In contrast, in pharmacology, multi-parameter models, such as the widely used Emax model, are used to describe relationships that are bounded above and below. We propose methods for estimating the parameters of a dose–response model by meta-analysis of summary data from the results of randomized controlled trials of a drug, in which each trial uses multiple doses of the drug of interest (possibly including dose 0 or placebo). We assume that, for each randomized arm of each trial, the mean and standard error of a continuous response measure and the corresponding allocated dose are available. We consider weighted least squares fitting of the model to the mean and dose pairs from all arms of all studies, and a two-stage procedure in which scalar inverse-variance meta-analysis is performed at each dose, and the dose–response model is fitted to the results by weighted least squares. We then compare these with two further methods inspired by network meta-analysis that fit the model to the contrasts between doses. We illustrate the methods by estimating the parameters of the Emax model to a collection of multi-arm, multiple-dose, randomized controlled trials of alogliptin, a drug for the management of diabetes mellitus, and further examine the properties of the four methods with sensitivity analyses and a simulation study. We find that all four methods produce broadly comparable point estimates for the parameters of most interest, but a single-stage method based on contrasts between doses produces the most appropriate confidence intervals. Although simpler methods may have pragmatic advantages, such as the use of standard software for scalar meta-analysis, more sophisticated methods are nevertheless preferable for their advantages in estimation.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3