Optimized adaptive enrichment designs

Author:

Ondra Thomas1ORCID,Jobjörnsson Sebastian2,Beckman Robert A3,Burman Carl-Fredrik24,König Franz1,Stallard Nigel5,Posch Martin1

Affiliation:

1. Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria

2. Department of Mathematics, Chalmers University, Gothenburg, Sweden

3. Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA

4. Statistical Innovation, AstraZeneca R&D, Molndal, Sweden

5. Warwick Medical School, The University of Warwick, Coventry, UK

Abstract

Based on a Bayesian decision theoretic approach, we optimize frequentist single- and adaptive two-stage trial designs for the development of targeted therapies, where in addition to an overall population, a pre-defined subgroup is investigated. In such settings, the losses and gains of decisions can be quantified by utility functions that account for the preferences of different stakeholders. In particular, we optimize expected utilities from the perspectives both of a commercial sponsor, maximizing the net present value, and also of the society, maximizing cost-adjusted expected health benefits of a new treatment for a specific population. We consider single-stage and adaptive two-stage designs with partial enrichment, where the proportion of patients recruited from the subgroup is a design parameter. For the adaptive designs, we use a dynamic programming approach to derive optimal adaptation rules. The proposed designs are compared to trials which are non-enriched (i.e. the proportion of patients in the subgroup corresponds to the prevalence in the underlying population). We show that partial enrichment designs can substantially improve the expected utilities. Furthermore, adaptive partial enrichment designs are more robust than single-stage designs and retain high expected utilities even if the expected utilities are evaluated under a different prior than the one used in the optimization. In addition, we find that trials optimized for the sponsor utility function have smaller sample sizes compared to trials optimized under the societal view and may include the overall population (with patients from the complement of the subgroup) even if there is substantial evidence that the therapy is only effective in the subgroup.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3