Shared parameter and copula models for analysis of semicontinuous longitudinal data with nonrandom dropout and informative censoring

Author:

Jaffa Miran A.1ORCID,Gebregziabher Mulugeta2,Jaffa Ayad A.34

Affiliation:

1. Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon

2. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA

3. Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

4. Department of Medicine, Medical University of South Carolina, Charleston, SC, USA

Abstract

Analysis of longitudinal semicontinuous data characterized by subjects’ attrition triggered by nonrandom dropout is complex and requires accounting for the within-subject correlation, and modeling of the dropout process. While methods that address the within-subject correlation and missing data are available, approaches that incorporate the nonrandom dropout, also referred to informative right censoring, in the modeling step are scarce due to the computational intensity and possible intractable integration needed for its implementation. Appreciating the complexity of this problem and the need for a new methodology that is feasible for implementation, we propose to extend a framework of likelihood-based marginalized two-part models to account for informative right censoring. The censoring process is modeled using two approaches: (1) Poisson censoring for the count of visits before dropout and (2) survival time to dropout. Novel consideration was given to the proposed joint modeling approaches for the semicontinuous and censoring components of the likelihood function which included (1) shared parameter, and (2) Clayton copula. The cross-part and within-part correlations were accounted for through a complex random effect structure that models correlated random intercepts and slopes. Feasibility of implementation, and accuracy of these approaches were investigated using extensive simulation studies and clinical application.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3