The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure

Author:

Li Yun123ORCID,Lee Yoonseok4,Port Friedrich K3,Robinson Bruce M3

Affiliation:

1. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA

2. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

3. Arbor Research Collaborative for Health, Ann Arbor, MI, USA

4. Department of Economics and Center for Policy Research, Syracuse University, Syracuse, NY, USA

Abstract

Unmeasured confounding almost always exists in observational studies and can bias estimates of exposure effects. Instrumental variable methods are popular choices in combating unmeasured confounding to obtain less biased effect estimates. However, we demonstrate that alternative methods may give less biased estimates depending on the nature of unmeasured confounding. Treatment preferences of clusters (e.g. physician practices) are the most frequently used instruments in instrumental variable analyses. These preference-based instrumental variable analyses are usually conducted on data clustered by region, hospital/facility, or physician, where unmeasured confounding often occurs within or between clusters. We aim to quantify the impact of unmeasured confounding on the bias of effect estimators in instrumental variable analysis, as well as several common alternative methods including ordinary least squares regression, linear mixed models, and fixed-effect models to study the effect of a continuous exposure (e.g. treatment dose) on a continuous outcome. We derive closed-form expressions of asymptotic bias of estimators from these four methods in the presence of unmeasured within- and/or between-cluster confounders. Simulations demonstrate that the asymptotic bias formulae well approximate bias in finite samples for all methods. The bias formulae show that instrumental variable analyses can provide consistent estimates when unmeasured within-cluster confounding exists, but not when between-cluster confounding exists. On the other hand, fixed-effect models and linear mixed models can provide consistent estimates when unmeasured between-cluster confounding exits, but not for within-cluster confounding. Whether instrumental variable analyses are advantageous in reducing bias over fixed-effect models and linear mixed models depends on the extent of unmeasured within-cluster confounding relative to between-cluster confounding. Furthermore, the impact of unmeasured between-cluster confounding on instrumental variable analysis estimates is larger than the impact of unmeasured within-cluster confounding on fixed-effect model and linear mixed model estimates. We illustrate the use of these methods in estimating the effect of erythropoiesis stimulating agents on hemoglobin levels. Our findings provide guidance for choosing appropriate methods to combat the dominant types of unmeasured confounders and help interpret statistical results in the context of unmeasured confounding.

Funder

Keryx Biopharmaceuticals; Amgen, BHC Medical, Janssen, Takeda, and Kidney Foundation of Canada;Hexal, DGfN, Shire, and WiNe Institute

National Institutes of Health

Amgen, Kyowa Hakko Kirin, AbbVie, Sanofi Renal, Baxter Healthcare, and Vifor Fresenius Medical Care Renal Pharma

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3