A Bayesian group lasso classification for ADNI volumetrics data

Author:

Majumder Atreyee1,Maiti Tapabrata1,Datta Subha2ORCID

Affiliation:

1. Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA

2. Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA

Abstract

The primary objective of this paper is to develop a statistically valid classification procedure for analyzing brain image volumetrics data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in elderly subjects with cognitive impairments. The Bayesian group lasso method thereby proposed for logistic regression efficiently selects an optimal model with the use of a spike and slab type prior. This method selects groups of attributes of a brain subregion encouraged by the group lasso penalty. We conduct simulation studies for high- and low-dimensional scenarios where our method is always able to select the true parameters that are truly predictive among a large number of parameters. The method is then applied on dichotomous response ADNI data which selects predictive atrophied brain regions and classifies Alzheimer’s disease patients from healthy controls. Our analysis is able to give an accuracy rate of 80% for classifying Alzheimer’s disease. The suggested method selects 29 brain subregions. The medical literature indicates that all these regions are associated with Alzheimer’s patients. The Bayesian method of model selection further helps selecting only the subregions that are statistically significant, thus obtaining an optimal model.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3