Controlling response dependence in the measurement of change using the Rasch model

Author:

Andrich David1

Affiliation:

1. Graduate School of Education, The University of Western Australia, Western Australia, Australia

Abstract

The advantages of using person location estimates from the Rasch model over raw scores for the measurement of change using a common test include the linearization of scores and the automatic handling of statistical properties of repeated measurements. However, the application of the model requires that the responses to the items are statistically independent in the sense that the specific responses to the items on the first time of testing do not affect the responses at a second time. This requirement implies that the responses to the items at both times of assessment are governed only by the invariant location parameters of the items at the two times of testing and the location parameters of each person each time. A specific form of dependence that is pertinent when the same items are used is when the observed response to an item at the second time of testing is affected by the response to the same item at the first time, a form of dependence which has been referred to as response dependence. This paper presents the logic of applying the Rasch model to quantify, control and remove the effect of response dependence in the measurement of change when the same items are used on two occasions. The logic is illustrated with four sets of simulation studies with dichotomous items and with a small example of real data. It is shown that the presence of response dependence can reduce the evidence of change, a reduction which may impact interpretations at the individual, research, and policy levels.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3