Bayesian framework for multi-source data integration-Application to human extrapolation from preclinical studies

Author:

Boulet Sandrine12ORCID,Ursino Moreno123ORCID,Michelet Robin4,Aulin Linda BS4,Kloft Charlotte4,Comets Emmanuelle56,Zohar Sarah12ORCID

Affiliation:

1. Inria, HeKA, Paris, France

2. INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France

3. Unit of Clinical Epidemiology, Assistance Publique – Hopitaux de Paris, CHU Robert Debré, INSERM CIC-EC 1426, Paris, France

4. Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany

5. INSERM, Univ Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMRS 1085, Rennes, France

6. INSERM, Université Paris Cité, IAME, Paris, France Sandrine Boulet and Moreno Ursino made equal contributions and are co-first authors. Emmanuelle Comets and Sarah Zohar made equal contributions and are co-last authors.

Abstract

In preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range. Our objective is to propose a Bayesian framework for multi-source data integration, customizable, and tailored to the specific research question. We focused on preclinical results extrapolated to humans, which allowed us to predict the quantities of interest (e.g. maximum tolerated dose, etc.) in humans. We build an approach, divided into four steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology. Our approach allows us to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.

Funder

European Union's Horizon 2020 research and innovation program

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3