Joint space–time Bayesian disease mapping via quantification of disease risk association

Author:

Baer Daniel R1,Lawson Andrew B1,Joseph Jane E2

Affiliation:

1. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA

2. Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA

Abstract

Alzheimer’s disease is an increasingly prevalent neurological disorder with no effective therapies. Thus, there is a need to characterize the progression of Alzheimer’s disease risk in order to preclude its inception in patients. Characterizing Alzheimer’s disease risk can be accomplished at the population-level by the space–time modeling of Alzheimer’s disease incidence data. In this paper, we develop flexible Bayesian hierarchical models which can borrow risk information from conditions antecedent to Alzheimer’s disease, such as mild cognitive impairment, in an effort to better characterize Alzheimer’s disease risk over space and time. From an application of these models to real-world Alzheimer’s disease and mild cognitive impairment spatiotemporal incidence data, we found that our novel models provided improved model goodness of fit, and via a simulation study, we demonstrated the importance of diagnosing the label-switching problem for our models as well as the importance of model specification in order to best capture the contribution of time in modeling Alzheimer’s disease risk.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3