Constraint approaches to the estimation of relative risk

Author:

Tang Yuanyuan1,Jones Philip G1,Sun Liangrui2,Arnold Suzanne V13,Spertus John A13

Affiliation:

1. Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA

2. Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA

3. University of Missouri-Kansas City, Kansas City, MO, USA

Abstract

In medical and epidemiologic studies, relative risk is usually the parameter of interest. However, calculating relative risk using standard log-Binomial regression approach often encounters non-convergence. A modified Poisson regression, which uses robust variance, was proposed by Zou in 2004. Although the modified Poisson regression with sandwich variance estimator is valid for the estimation of relative risk, the predicted probability of the outcome may be greater than the natural boundary 1 for the unobserved but plausible covariate combinations. Moreover, the lower and upper bounds of confidence intervals for predicted probabilities could fall out of (0, 1). Chu and Cole, in 2010, proposed a Bayesian approach to overcome this issue. Posterior median was used to get the parameter estimation. However, the Bayesian approach may provide biased estimation, especially when the probability of outcome is high. In this article, we propose an alternative constraint optimization approach for estimating relative risk. Our approach can reach similar or better performance than Bayesian approach in terms of bias, root mean square error, coverage rate, and predictive probabilities. Simulation studies are conducted to demonstrate the usefulness of this approach. Our method is also illustrated by Prospective Registry Evaluating Myocardial Infarction: Event and Recovery data.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3