An efficient approach for optimizing the cost-effective individualized treatment rule using conditional random forest

Author:

Xu Yizhe1ORCID,Greene Tom H.1,Bress Adam P.1,Bellows Brandon K.2,Zhang Yue1,Zhang Zugui3,Kolm Paul4,Weintraub William S.4,Moran Andrew S.2,Shen Jincheng1

Affiliation:

1. Department of Population Health Sciences, University of Utah, SLC, UT, USA

2. Columbia University Medical Center, New York, NY, USA

3. Christiana Care Health System, Newark, DE, USA

4. Department of Medicine, MedStar Health Research Institute, Washington, DC, USA

Abstract

Evidence from observational studies has become increasingly important for supporting healthcare policy making via cost-effectiveness analyses. Similar as in comparative effectiveness studies, health economic evaluations that consider subject-level heterogeneity produce individualized treatment rules that are often more cost-effective than one-size-fits-all treatment. Thus, it is of great interest to develop statistical tools for learning such a cost-effective individualized treatment rule under the causal inference framework that allows proper handling of potential confounding and can be applied to both trials and observational studies. In this paper, we use the concept of net-monetary-benefit to assess the trade-off between health benefits and related costs. We estimate cost-effective individualized treatment rule as a function of patients’ characteristics that, when implemented, optimizes the allocation of limited healthcare resources by maximizing health gains while minimizing treatment-related costs. We employ the conditional random forest approach and identify the optimal cost-effective individualized treatment rule using net-monetary-benefit-based classification algorithms, where two partitioned estimators are proposed for the subject-specific weights to effectively incorporate information from censored individuals. We conduct simulation studies to evaluate the performance of our proposals. We apply our top-performing algorithm to the NIH-funded Systolic Blood Pressure Intervention Trial to illustrate the cost-effectiveness gains of assigning customized intensive blood pressure therapy.

Funder

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3