An alternative classification to mixture modeling for longitudinal counts or binary measures

Author:

Subtil Fabien1234,Boussari Olayidé12345,Bastard Mathieu6,Etard Jean-François67,Ecochard René1234,Génolini Christophe8910

Affiliation:

1. Université de Lyon, Lyon, France

2. Université Lyon 1, Villeurbanne, France

3. CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France

4. Hospices Civils de Lyon, Service de Biostatistique, Lyon, France

5. International Chair in Mathematical Physics and Applications, Université d'Abomey-Calavi, Abomey-Calavi, Bénin

6. Epicentre, Paris, France

7. UMI 233 TransVIHMI, Institut de Recherche pour le Développement, Université Montpellier 1, Montpellier, France

8. INSERM, UMR 1027, Research Unit on Perinatal Epidemiology and Childhood Disabilities, Adolescent Health, Toulouse, France

9. Université Paul Sabatier, UMR 1027, Toulouse, France

10. 0CeRSM (EA 2931), UFR STAPS, Université de Paris Ouest-Nanterre-La Défense, France

Abstract

Classifying patients according to longitudinal measures, or trajectory classification, has become frequent in clinical research. The k-means algorithm is increasingly used for this task in case of continuous variables with standard deviations that do not depend on the mean. One feature of count and binary data modeled by Poisson or logistic regression is that the variance depends on the mean; hence, the within-group variability changes from one group to another depending on the mean trajectory level. Mixture modeling could be used here for classification though its main purpose is to model the data. The results obtained may change according to the main objective. This article presents an extension of the k-means algorithm that takes into account the features of count and binary data by using the deviance as distance metric. This approach is justified by its analogy with the classification likelihood. Two applications are presented with binary and count data to show the differences between the classifications obtained with the usual Euclidean distance versus the deviance distance.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3