Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass

Author:

Augustin Nicole H1,Mattocks Calum2,Faraway Julian J1,Greven Sonja3,Ness Andy R4

Affiliation:

1. Department of Mathematical Sciences, University of Bath, Bath, UK

2. Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK

3. Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany

4. School of Oral and Dental Science and School of Social and Community Medicine, Bristol Dental School, Bristol, UK

Abstract

Accelerometers are widely used in health sciences, ecology and other application areas. They quantify the intensity of physical activity as counts per epoch over a given period of time. Currently, health scientists use very lossy summaries of the accelerometer time series, some of which are based on coarse discretisation of activity levels, and make certain implicit assumptions, including linear or constant effects of physical activity. We propose the histogram as a functional summary for achieving a near lossless dimension reduction, comparability between individual time series and easy interpretability. Using the histogram as a functional summary avoids registration of accelerometer counts in time. In our novel method, a scalar response is regressed on additive multi-dimensional functional predictors, including the histogram of the high-frequency counts, and additive non-linear predictors for other continuous covariates. The method improves on the current state-of-the art, as it can deal with high-frequency time series of different lengths and missing values and yields a flexible way to model the physical activity effect with fewer assumptions. It also allows the commonly made modelling assumptions to be tested. We investigate the relationship between the response fat mass and physical activity measured by accelerometer, in data from the Avon Longitudinal Study of Parents and Children. Our method allows testing of whether the effect of physical activity varies over its intensity by gender, by time of day or by day of the week. We show that meaningful interpretation requires careful treatment of identifiability constraints in the light of the sum-to-one property of a histogram. We find that the (not necessarily causal) effect of physical activity on kg fat mass is not linear and not constant over the activity intensity.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3