Individual treatment effect prediction for amyotrophic lateral sclerosis patients

Author:

Seibold Heidi1,Zeileis Achim2,Hothorn Torsten1

Affiliation:

1. Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland

2. Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Austria

Abstract

A treatment for a complicated disease might be helpful for some but not all patients, which makes predicting the treatment effect for new patients important yet challenging. Here we develop a method for predicting the treatment effect based on patient characteristics and use it for predicting the effect of the only drug (Riluzole) approved for treating amyotrophic lateral sclerosis. Our proposed method of model-based random forests detects similarities in the treatment effect among patients and on this basis computes personalised models for new patients. The entire procedure focuses on a base model, which usually contains the treatment indicator as a single covariate and takes the survival time or a health or treatment success measurement as primary outcome. This base model is used both to grow the model-based trees within the forest, in which the patient characteristics that interact with the treatment are split variables, and to compute the personalised models, in which the similarity measurements enter as weights. We applied the personalised models using data from several clinical trials for amyotrophic lateral sclerosis from the Pooled Resource Open–Access Clinical Trials database. Our results indicate that some amyotrophic lateral sclerosis patients benefit more from the drug Riluzole than others. Our method allows gradually shifting from stratified medicine to personalised medicine and can also be used in assessing the treatment effect for other diseases studied in a clinical trial.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3