Online control of the familywise error rate

Author:

Tian Jinjin1ORCID,Ramdas Aaditya12

Affiliation:

1. Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA

2. Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Biological research often involves testing a growing number of null hypotheses as new data are accumulated over time. We study the problem of online control of the familywise error rate, that is testing an a priori unbounded sequence of hypotheses ( p-values) one by one over time without knowing the future, such that with high probability there are no false discoveries in the entire sequence. This paper unifies algorithmic concepts developed for offline (single batch) familywise error rate control and online false discovery rate control to develop novel online familywise error rate control methods. Though many offline familywise error rate methods (e.g., Bonferroni, fallback procedures and Sidak’s method) can trivially be extended to the online setting, our main contribution is the design of new, powerful, adaptive online algorithms that control the familywise error rate when the p-values are independent or locally dependent in time. Our numerical experiments demonstrate substantial gains in power, that are also formally proved in an idealized Gaussian sequence model. A promising application to the International Mouse Phenotyping Consortium is described.

Funder

NSF CAREER Award

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exhaustive ADDIS principle for online FWER control;Biometrical Journal;2024-04

2. The online closure principle;The Annals of Statistics;2024-04-01

3. Online multiple testing with super-uniformity reward;Electronic Journal of Statistics;2024-01-01

4. Online false discovery rate control for LORD++ and SAFFRON under positive, local dependence;Biometrical Journal;2023-12-16

5. Adaptive platform trials: the impact of common controls on type one error and power;Journal of Biopharmaceutical Statistics;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3