Revisiting performance metrics for prediction with rare outcomes

Author:

Adhikari Samrachana1ORCID,Normand Sharon-Lise2,Bloom Jordan3,Shahian David3,Rose Sherri4ORCID

Affiliation:

1. Department of Population Health, New York University School of Medicine, USA

2. Department of Health Care Policy, Harvard Medical School, USA

3. Department of Surgery, Massachusetts General Hospital, USA

4. Center for Health Policy, Stanford University, USA

Abstract

Machine learning algorithms are increasingly used in the clinical literature, claiming advantages over logistic regression. However, they are generally designed to maximize the area under the receiver operating characteristic curve. While area under the receiver operating characteristic curve and other measures of accuracy are commonly reported for evaluating binary prediction problems, these metrics can be misleading. We aim to give clinical and machine learning researchers a realistic medical example of the dangers of relying on a single measure of discriminatory performance to evaluate binary prediction questions. Prediction of medical complications after surgery is a frequent but challenging task because many post-surgery outcomes are rare. We predicted post-surgery mortality among patients in a clinical registry who received at least one aortic valve replacement. Estimation incorporated multiple evaluation metrics and algorithms typically regarded as performing well with rare outcomes, as well as an ensemble and a new extension of the lasso for multiple unordered treatments. Results demonstrated high accuracy for all algorithms with moderate measures of cross-validated area under the receiver operating characteristic curve. False positive rates were [Formula: see text]1%, however, true positive rates were [Formula: see text]7%, even when paired with a 100% positive predictive value, and graphical representations of calibration were poor. Similar results were seen in simulations, with the addition of high area under the receiver operating characteristic curve ([Formula: see text]90%) accompanying low true positive rates. Clinical studies should not primarily report only area under the receiver operating characteristic curve or accuracy.

Funder

National Institute of General Medical Sciences

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3